第273章 行程确定(为土豆有病加更5)(2/2)
毕竟,这样的学术交流的机会,多参加一些,是有不少好处的。
作为燕大新一代的领军者,燕大也不会放过这种培养人才的机会。
但陈舟还没见过这位在燕京国际数学研究中心的“大师兄”,这回倒是可以在路上交流交流了。
虽然大师兄徐晨阳研究的主要是代数几何领域,但没有任何一位数学家能够拒绝数论的魅力。
在行程确定后,陈舟也终于开始准备三十分钟报告的内容。
通过上次隐藏任务的“培养”,陈舟已经知道了,真正的演讲大师,是不需要稿子的。
那些准备好的稿子,只是留给没有准备的人的。
像他这样,已经把冰雹猜想的证明刻在脑海中的人,还需要演讲稿?
花了近半个小时的时间,陈舟简单的做了个t,把一些核心的证明过程贴了上去。
嗯,t还是得做一个的
t完成后,保存,拷进u盘,便算结束了。
陈舟转头又投入了克拉梅尔猜想的世界。
关于那个克拉梅尔的修改猜想,他有了新的思路。
“如果近似去看克拉梅尔修正猜想的话”
陈舟在草稿纸上列着数表。
这个数表并不是爱多士猜想证明方法的复合数列表。
而是陈舟在其基础上进行改变得到的。
把数表列出来后,陈舟拿笔开始圈数。
克拉梅尔修正猜想的表述是,n1naxn1nognognogogn2。
这里陈舟圈出来的便是分别符合,n1naxn1n和ognognogogn2的数。
这种方法,其实和筛法有点类似。
筛法,又称埃拉托斯特尼筛。
具体做法是,先把n个自然数按次序排列起来。
1不是质数,也不是合数,直接划去。
2是质数,留下。
而后把2后面能被2整除的数都划去。
2后面第一个没划去的数是3,把3留下。
再把3后面所有能被3整除的数全部划去。
以此推类,就会把不超过n的全部合数都筛掉,留下的就是不超过n的全部质数。
当然,这只是简单的表述。
筛法的应用很广泛,从四色定理开始,到构造无穷多个两两相连的区域,到哥德巴赫猜想的研究,等等等等。
而把筛法运用到极致的人,便是陈老先生了。
这位把哥德巴赫猜想推进到“12”的老先生,便是在研究哥猜的过程中,把筛法理论带到了顶点。
一直到现在,都无法再进一步。
陈舟自然也知道筛法的运用基本上已经到了极致,很难再有突破。
但不妨碍他从这方面去寻找思路。
“如果用筛法的公式,去验证n1naxn1nognognogogn2的话”
随着时间的推移,陈舟渐渐皱起了眉头。
“克拉梅尔修正猜想本身就是以近似值去做出的改变,如果用公式的话,是不对等的”
“相反,这样绕下去,又会绕回克拉梅尔猜想本身”
陈舟放下笔,暂时脱离眼前的研究,转而打开电脑上的献看了起来。
看着看着,他忽然眼前一亮。